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We consider a d-dimensional Ising spin glass and construct lower bounds for 
the mean free energy density which, in general, improve the classical lower 
bounds given by the annealed free energy density. The bounds are achieved by 
introducing generalized finite-volume free energy densities. The large-deviations 
aspects of the problem are displayed and examples discussed. 
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1. INTRODUCTION 

It is well known that the computation of the free energy density of a dis- 
ordered system is a difficult problem even in simple one-dimensional 
models. 

Assuming that the free energy density f(fl) of the considered system 
has the self-averaging property, the problem itself reduces to the evaluation 
of its mean value E[f(fl)] with respect to the probability distribution of 
the underlying randomness. For mean-field spin-glass systems this task is 
generally accomplished by means of the replica trick, which has greatly 
contributed to the physical understanding of the glassy-phase properties, c5) 
Unfortunately, the replica trick cannot be usefully adapted to study Ising 
spin glasses on a lattice. 

In this paper we follow a quite different approach to disordered 
systems which has been recently proposed in ref. 13 and applied to different 
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models (in refs. 6 and 7 to one-dimensional models and in ref. 8 to a model 
with short-range J = _  1 interactions competing with long-range positive 
interactions). The method consists in an improvement of the annealed 
approximation of the mean free energy density. The starting point is the 
introduction of generalized finite-volume partition functions depending on 
some Lagrangian multipliers p associated with intensive variables of the 
disorder. Examples of these variables are the concentration of negative 
bonds in ferromagnetic Ising models with impurities and the frustration in 
Ising spin glasses. The idea is to take first the expectation of these 
generalized partition functions in order to estimate the mean free energy 
density and then optimize the result by a proper choice of the Lagrangian 
multipliers. In this way it is possible to constrain the disorder to minimize 
the difference between the mean free energy density and its annealed 
approximations. The method, for the special case of single-plaquette 
frustration, was proposed in ref. 9, and, in another special context, in 
ref. 10. A similar approach, based on the use of a microcanonical ensemble, 
can be found in ref. 11. 

The paper is organized as follows. 
In Section 2 we introduce the Ising spin-glass model on the d-dimen- 

sional lattice 7/d. We first report some known rigorous results, then we 
prove a theorem which ensures the existence of the momentum generating 
function associated with the partition function. This result is used to state 
some large-deviations properties of the model and to give an alternative 
proof of the existence of the mean free energy density for a large class of 
distributions of the random couplings {Ju}" 

In Section 3 we introduce a generalized class of partition functions 
ZA(fl, 12) and the associated finite-volume free energy densities fA(fl, I~). We 
then discuss the associated large-deviation problem and we show that the 
generalized free energy densities coincide with the ordinary free energy 
densities fA(fl) only in the thermodynamic limit. Finally we show how to 
improve concretely the annealed lower bound by computing the infinite- 
volume limit of -(1//3 IAI) In nz[ZA(fl,/t)] and by taking the supremum 
with respect to the Lagrange multipliers/1 (Theorem 3.3). 

In Section 4 we discuss in detail some applications to d-dimensional 
Ising spin glasses in order to illustrate the approximation strategy 
proposed in the paper. We consider three cases: (a) Gaussian couplings; 
(b) dichotomic couplings in two dimensions, where we consider intensive 
variables of the disorder of the type proposed in ref. 9; and (c) dichotomic 
couplings in three dimensions, where we extend the approach used in the 
previous point. In all these cases we improve the annealed estimates for the 
free energy and ground-state energy of Ising spin glasses with nearest- 
neighbor interactions. 
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2. LARGE D E V I A T I O N S  

We consider an Ising spin-glass system on the d-dimensional lattice 7/u 
with nearest-neighbor interactions. The Hamiltonian which defines the 
model is 

H A ( a ) = -  Y'. JijGi~j (2.1) 
(i,j) 

where A is a finite subset of Z a with cardinality IA[ and ( i , j )  denotes 
nearest-neighbor sites i,j in A. The {Jo[i, j e Z  a} are random couplings 
and the {o i l / ~  77a} are spin variables which can take values + 1 or -1 .  
In the following the couplings Jo will be chosen to be i.i.d, random 
variables, and averages with respect to their probability distribution will be 
indicated by E[-]. 

The associated partition function is obtained as a sum over all the 
configurations of ~ = { ai I i ~ A }, 

ZA(~) = E exp[- jSHa(a) ]  (2.2) 
{o} 

where p > 0 is the inverse of the temperature. The free energy density is 
then defined by the following limit: 

1 
f ( f l )  = - limz. ~ - ~  In[ Z A ( , 8 )  ] (2 .3 )  

The thermodynamic limit (2.3), performed in the sense of Van Hove, 
was shown to exist with probability one for very general coupling distribu- 
tions by different authorsJ 16'.4'3"4~ Their proofs are not limited to nearest- 
neighbor couplings, but they extend to the case of generic short-range 
interactions. Moreover, the same authors rigorously proved the self- 
averaging property: the free energy density f(fl) equals the mean free 
energy density IE[f(fl)] almost surely. 

In this section we are interested in the large-deviations properties of 
the model. We refer to refs. 1, 15, and 14 for some already established 
results on disordered systems and in particular on spin glasses. 

Let us consider a sequence {AN} of regular cubes of increasing size 
such that ANcAN+~,~7/d, and the associated sequences of random 
variables { In ZAN } . We then define the logarithm of the moment generating 
function (divided by [AN[) 

1 
CNtt) -- ~ In E[ (ZAN)'] (2.4) 

822/80/|-2-22 
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It is well known that if 

~b(t)- lim ~bu(t) (2.5) 
N ~ o D  

exists finite for all t e R, then the large-deviation upper bound 

1 
lim sup - -  In QN(K) <~ -- inf I(z) (2.6) 

is satisfied for each closed set K c  R, where QN is the distribution of the 
random variable - f l f u ( f l )=  (1/IANI) In(ZAN) on R. The random variable 
fu(fl)  is the finite-volume free energy density and I(z) is the rate function 
given by the Legendre-Fenchel transform <2) 

I(z) =- sup [tz -- ~b(t)] (2.7) 
t ~ R  

In the physical literature the logarithm of the moment generating function 
and its Legendre-Fenchel transform have been widely studied in different 
contexts (for example in the so-called multifractal approach~7)). We will 
prove the following result, which, as remarked, implies (2.6): 

Theorem 2 . 1 .  Assume there is a function 2: R + --* R + such that one 
has exp [ -2 (u ) ]  ~< IE[exp(-u IJ0-l) and IF[exp( +u  IJ0l)] ~< exp[ +2(u)];  
then the function ~b defined in (2.5) exists finite on I~. 

Proof. Subdivide the cube A N into subcubes { A ~ t l i =  1 ..... k d} of 
cardinality I A ~t I = M = m d for all i so that I A N I = (km)d = kdM. To any sub- 
cube of such decomposition is associated the partition function Z i= ZA~. 
From definitions (2.1) and (2.2) it is easy to state the following inequalities: 

(;--ISIlZZ) e x p (  <i .D'-IJ ,yl)  ZAN<~ ~ <;,j.>,+ 

where the sum runs over all the couples of first-neighbor sites < i , j  >' with 
i and j in different subcubes. Since the couplings Jo are independent 
random variables, we have from (2.8) 

1 ka I 
IANI Y~ In E[(Z') ' ]  + T - ~  y'  in n:[exp(-fll/I.  IJol)] 

i = 1  ( i , j ) '  

1 
~ < -  In IF[(ZA,J] b'lNI 

1 ka 1 
In n:[exp( +fll t l .  IJ0l)] (2.9) 4 - -  Z In EE(z')'] +,-7-7, 

]ANI i=1 I-ZlN I ( i , j > '  
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Moreover, since the couplings J,.j are identically distributed, we have 
E[(Zi) '] = E[(Z~)']. This implies 

1 k~ k d __~ 
IANI ~ In E[(Zi) '] = I---~u[ In E[(Z~) '] = In E[(Z~) '] (2.10) 

i = l  

The total number of couples of first-neighbor sites (i,  j ) '  with i and j in 
different subcubes is estimated from above by dk d m d- 1. Therefore, using 
our hypotheses and inequality (2.9), we get 

i A - • l n  E[(ZA~)'] - - l l n  E[(Z*) '] <~ dkdmd-~ 
IANI 

- -  2(Itl/~) = d  2(Itl/1) 
m 

(2.11) 

i.e., with the notations of (2.4), 

~)N(t) 1 ),] c - ~ l n  E[(Z '  ~<--m (2.12) 

where c = c(fl, t, d) > 0. The above estimate now implies 

2 c  
0 ~< lim sup ~b N(t) --lim inf ~N(t) ~ < -  (2.13) 

N ~ o v  N - - ~  m 

for all m. The result follows. II 

Remark 2. 7. There is a well-known argument (e.g., ref. 12) which 
ensures that the existence of the limit for the sequence { q~N} attached to the 
geometrical sequence of cubes {AN} implies the existence of the thermo- 
dynamic limit for {~bA} (A ,~Z a in the sense of van Hove). 

Remark 2.2. The result of the Theorem 2.1 remains true, up to small 
technical modifications, for short-range interaction systems. 

Remark 2.3. The hypothesis on the J,~ contained in the theorem 
defines a large class of distributions which includes all distributions with 
finite support and the Gaussian distribution. 

Before concluding this section, we give an alternative proof of the 
existence of the mean free energy density. 

Theorem 2.2. Assume the hypothesis of Theorem 2.1 and more- 
over assume 2(u)= O(u) as u-~ 0; then the derivative of ~b(t) at t = 0 exists 
and equals - f lE[ f ( f l ) ] .  
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Proof. By (2.11) and the hypothesis on 2 we have 

] ~N(t) 1 In E[ (Z ' ) ' ]  ~<c (2.14) 
t Mt  m 

with c=c(f l ,  d ) > O  and Itl small enough. Letting N ~ o o  (as before, 
M is kept fixed), by Theorem 2.1 we have that (2.14) also holds with ~(t) 
replacing ~N(t). 

By a first-order Taylor expansion of the exponential and logarithmic 
functions we obtain 

In EE(Z') ')] = [ t + o ( t ) ]  EEln(ZI)] (2.15) 

for Itl sufficiently small. 
Therefore 

- - 7 -  ~ r +  In IE[(Z1)] ~<Cm (2.16) 

which implies 

a~ ( t ) t 2c 
0 ~< lira sup"  - lim i n f "  " ~<-- (2.17) 

, .oo t t-o~ t m 

for all m. Since ~(0)= 0, the differentiability of ~ at t = 0 follows. Now we 
take in (2.16) the limit for t ~  0 and we get 

~b , (0 )_E[ l ln (ZA~) ]  ~<C'm (2.18) 

(in order to stress the dependence on M, we avoided here the use of the 
short notation Z1). Then for m = M ' / d ~  ~ we obtain the result. | 

Remark 2.4. Since ~b(t) is a convex function vanishing at the origin, 
one has E[f(fl)] >/ - (1 / f l )~( t ) / t  for any positive t. In particular one has 
the well-known lower bound 

n:[f(fl)] >~ f~(fl) = -- ~ r (2.19) 

The function fa(fl) is the annealed approximation of the free energy density. 
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3. GENERALIZED T H E R M O D Y N A M I C  POTENTIALS 

In this section we consider again an Ising spin-glass system on the 
d-dimensional lattice Z d with first-neighbor interaction. The random 
couplings { Jo} are assumed to satisfy the condition of Theorem 2.1. 

Let oc: R ~  R be a function such that the {o~(J,j)} are i.i.d, random 
variables which satisfy E[0~(Jg)] = 0. We then define a generalized class of 
finite-volume partition functions: 

where 

ZA(fl,/2) -- ~ exp[ -- f lHA(g ) +/2AA] (3.1) 
{~} 

Aa = ~ oc(Jo) (3.2) 
(i.j> 

As before, A is a finite subset of Z d with cardinality [A] and ( i , j )  
denotes nearest-neighbor sites i , j  in A. The real variable/2 has to be seen 
as a Lagrangian multiplier and, obviously, ZA(fl, O) = ZA(fl) (the partition 
function defined in the previous section); moreover, we have the following 
result. 

P r o p o s i t i o n  3.1. For any real/2 the following equality holds: 

1 
lim E[In{ZA( fl,/2)} ] = E[f(fl)] (3.3) 
.~.z~ fl IAI 

Proof. Equation (3.1) can be rewritten as 

Z A(fl, /2 ) = Z A(fl) exp(/2AA) (3.4) 

Substituting in (3.3) and taking into account that ~:[A~]=0, the 
proof follows. | 

P r o p o s i t i o n  3.2. Assume that the i.i.d, random variables {ct(J0.)} 
satisfy the condition ~:[ ]~(J0)l ] < oe; then the following limit holds almost 
surely: 

l 
lim - - - l n [ Z A ( f l , / 2 ) ]  =f( f l )  (3.5) 

A.z~ fl IAI 

It is sufficient to remark that the strong law of large numbers Proof. 
implies 

1 1 
lim - - -  AA = lim ~ oc(Ju) = 0 (3.6) 

A.-z~ fl lAI A.-z~ fl Ial <,,/> 

almost surely. I 
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We consider now, as before, a sequence {AN} of regular cubes of 
increasing size such that A N t  AN+1,;'Z d. We then define a class of finite- 
volume generalized free energe densities 

1 
fN(fl 'P)= fl [AN[ ln[Za,~(fl, p)] (3.7) 

We have the obvious equality 

fN(fl, 0)=fN(fl)  (3.8) 

where fN(fl) is the free energy density defined in the previous section. It 
should be remarked that all the above generalized free energy densities, by 
virtue of Propositions 3.1 and 3.2, are equivalent to ordinary free energy 
density in the thermodynamic limit. The finite-volume fluctuations, on the 
contrary, depend on p. 

We are now interested in giving estimates on the large deviations of 
the f~(fl, lz); moreover, we are also interested in improving the annealed 
lower bound on the free energy of Remark 2.4. Define 

1 ,] 
~b~,(t) = ] - ~  In E[ { ZAu(fl, p)} (3.9) 

The following theorem shows that under suitable conditions the function 

~b"(t) = l im ~b~(t) (3 .10)  
N ~ o o  

exists finite for all t ~ •. 

Theorem 3.1. Let e be a real number for which there is a function 
2": R + --, ~ + such that the following inequalities hold: 

exp[ -2" (u ) ]  ~< EEexp{ - u  IJ,jI + eu~(J,A} ] 

IE[exp{ +u  Idol + euo'(Jo)} ] ~< exp[ +2*(u)] 

Then for p =eft the function & defined in-(3.10) exists finite on ~. 

Proof. The proof is a trivial modification of the proof of 
Theorem 2.1. II 

T h e o r e m  3.2. Assume the hypothesis of Theorem 3.1 and more- 
over assume that 2"(u)= (9(u) as u ~ 0; then the derivative of c~'(t) at t = 0 
exists and equals - f l E [ f ( f l ) ] .  
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Proof. The proof is the same as in Theorem 2.2. II 

The existence of the function eku(t) for any real t [notice that ~b~ 
~b(t), where ~(t) is defined in the previous section] allows us to estimate the 
large deviations of the variables f ( f l ,  t~). In fact, the following large- 
deviation upper bound is satisfied: 

1 
lim s u p -  In QUu(K ) <~ - inf P'(z) (3.11) 
IA~,I ~ oo N z~ K 

for each closed set K c  R, where Q~v is the distribution of - f l f N ( f l ,  l t)  on 
~. The random variable fN( f l ,  I z) is the finite-volume generalized free energy 
density and P'(z) is the rate function given by the Legendre-Fenchel trans- 
form 

IU(z) = sup [ t z  -- ~bu(t)] (3.12) 
t ~ N I  

We can give to our results the following interpretation: the multi- 
plicative term exp(/tAA) [.4 A is defined in (3.2)] has the effect of a con- 
straint on the disorder which modifies the distribution of the finite-volume 
free energy. 

We now use the above results to improve the annealed estimate of 
~[f(fl)].  Let us define the constrained annealed approximation of the free 
energy density 

g(fl) ~suPr [ - ~  ~b"(1)] (3.13) 

where F is the subset of R consisting of the numbers # for which q~u(1) 
exists. Then we have the following result. 

T h e o r e m  3.3. Suppose F includes the origin; then the following 
inequalities hold: 

eEf(p)] >/g(p) >--L(P) (3.14) 

where f , ( f l )  - - (1/[3) ~b~ is the annealed approximation of the free 
energy density introduced in Remark 2.4. 

Proof .  Since ~u(t )  is a convex function of t, vanishing at t = 0 ,  one 
has E l f ( r ) ] />  -(1/f l)  ek~(t)/t for any t E R + and/~ ~ R. In particular, one 
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has E [ f ( f l ) ] / > -  ( l / r )  ~b~'(1). From this inequality it immediately follows 
that 

E[f(fl)] ~> sup [ -  fl ~b~'(1)] =g(fl)  (3.15) 
/.teF 

On the other hand, by definition, one has 

g ( f l ) = s u p [ - 1  ] 1 
t ,  E F L  ~ ' ( 1 )  ~ > - ~ ~  (3.16) 

which complete the proof. | 

Remark 3. 7. Notice that if the {J,~.} have distribution of the type 
described in Remark 2.3, then Theorem 2.1 holds and F includes the origin. 

Remark 3.2. It is in general possible to extend the previous results 
to the case of short-range interactions and to the case where the function 

depends not only on the variable Jo, but also on the variables Ji,j, with 
i'j' in a short range around 9. 

Remark 3.3. The results can be also easily extended to the case 
where a vectorial function a and a vectorial Lagrangian multiplier/z are 
considered. In this case the exponent pA will be the scalar product/xA = 
/z~A~ +/12A2+ ... +/2,,A,. The function g(fl) will be obtained by taking 
the supremum with respect to all the components of/x. 

Theorem 3.3 defines a variational method which enables one in many 
cases to compute explicitly the constrained annealed approximation of the 
free energy g(fl). The value of the g(fl) obviously depends on the function 
o~(Jo.) which appears in the exponent of the generalized partition functions. 
The choice of a cannot be optimized by a priori strategies. This choice will 
be done case for case by taking into account both the feasibility of calcula- 
tions and the fact that the larger the number of components of the vectors 
/2 and a, the better the estimates. 

4. SPIN GLASSES IN TWO AND MORE DIMENSIONS:  
EXAMPLES AND N U M E R I C A L  RESULTS 

In this section we will discuss some applications of the approximation 
strategy discussed in Section 3. We will consider nearest-neighbor spin 
glasses in dimension d with d>~ 2, the case d =  1 being exactly solvable. 
Nevertheless, it is useful to state some facts about the one-dimensional 
Ising spin glass (see also ref. 14) which are useful for comparison with Ising 
spin glasses of higher dimensionality. 
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The partition function of the one-dimensional Ising spin glass is 

ZN = Z I-I exp(flJ,a,a,+, ) = 2 u 1--I cosh(flJ,) 
{,~} i i 

Since the variables J~ are i.i.d., we immediately obtain 

~b(t) = l irno 1~ In E[ (ZN)' ]  = t In 2 + In{ IF[ (cosh{ flJ,} ) ' ] }  

(4.1) 

(4.2) 

were J~ is any one of the couplings. From (2.3) it is straightforward to 
compute the free energy density IE[f(fl)] for a given distribution of the 
couplings: 

EEf(fl)] = - In 2 - ~  IE[ln cosh(flJA] (4.3) 

Let us recall that Eq. (2.7) gives the rate function I(z) as a Legendre- 
Fenchel transform of r computed in (4.2). For distributions of the 
coupling variables Ji for which the expectation in (4.2) is differentiable for 
all real t, the following inequality holds: 

1 
lim inf--In Qu(G)>i - inf I(-) (4.4) 

N - -  ~:~ N -- E G 

for each open set G in R. This inequality is the large-deviation lower bound 
for Ising spin glasses in one dimension and cannot be easily extended to 
higher dimensions. The large-deviation upper bound, on the contrary, is 
stated in Section 2 for Ising spin glasses of arbitrary dimension. 

4.1. Gaussian Coupl ings 

Let us consider a d-dimensional spin glass with i.i.d, couplings Jo 
distributed according to a normal Gaussian (E[Jo] = 0  and E[J~.] = 1). 
We first compute the annealed approximation of the free energy density 
and then a constrained annealed approximation obtained by means of a 
function A u of tha type introduced in Section 3. The partition function is 

Z~v= ~ I-[ exp(flJ0aiafl (4.5) 
{a} (/j> 

(here and in the following we denote ZAN by Z~v and A~,, by AN). It is easy 
to compute the expectation E[Zzr since the product in (4.5) is a product 
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of independent variables. From this expectation one immediately obtains 
the annealed free energy density 

1 dfl (4.6) f . (p )  = - ~ In 2 - -~- 

where d is the dimension of the lattice. We see that, also in the one-dimen- 
sional case, this approximation is very bad for low temperatures. In fact, 
the function f,,(fl) decreases linearly (negative entropy!) for large fl while 
f ( f l )  approaches a constant. Nevertheless, this result can be used, following 
ref. 9, to estimate the ground-state energy of the quenched model as 

Eo I> supfo(fl) = - (2d In 2)1/2 (4.7) 
# 

This estimate is simply based on the observation that the entropy must be 
positive for the quenched mode and therefore 

E o = IF[f(p = oo)] = sup UE[f(fl)] >~ supf~(fl) 

Both (4.6) and (4.7) can be improved by using the constrained annealed 
approximations of the free energy. Our choice of AN is of the type 

A N =  ~ oc(Jo.) (4.8) 
( i , j )  

with the variable ~ depending on a single coupling Ju- The simplest trial for 
is to assume that it is linear with respect to the coupling. A direct com- 

putations shows that this choice would not lead to an improvement of the 
annealed estimate. Indeed, it is possible to show that odd functions 0c do 
not allow an improvement of the estimate of the free energy. ~6) Our choice 
is 

oc( Ju) = ln { cosh(flJu) } - Y_E ln { cosh(flJu) } ] (4.9) 

0c is an even function with vanishing average. The reason for this particular 
choice will be more evident later. The generalized partition function is 

ZN(P,~) = Z 1--[ expEPLj~,~j+~(J,j)] (4.10) 
{c,} <0> 

Also in this case we can compute 

- -  In EEZN( f l , /~ ) ]  (4.11) 
,6' IANI 
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The supremum with respect to It of  the above expression gives constrained 
free energy density 

g(fl) = - In 2 - ~  ~:[ln cosh(flJu) ] (4.12) 

where Jo is any one of the couplings distributed according to a normal  
Gaussian. This is a better approximat ion  than fo(p);  in fact, we have a 
strict inequality g(B)>f , ( ]~) .  Moreover ,  for large /~, g(p)  approaches a 
constant. This is a qualitative behavior  which is at variance with the wrong 
behavior  offa(P) .  Finally, in one dimension, g(fl) is the correct free energy 
density f ( f l )  in (4.3). The expression (4.9) is, in fact, an ad hoc choice to 
obtain the correct result at least in one dimension. 

Also in this case it is possible to estimate the ground-state  energy of 
the quenched model  as 

E0 >~ sup g(fl) (4.13) 
# 

which improves the result (4.7). For  example,  for d =  3 the inequality (4.7) 
gives Eo~>-2 .04 ,  while the inequality (4.13) gives Eo~>-1 .82 .  The 
functions fa(fl) and g(//) are plotted for d =  3 in Fig. 1. 

-1.5- 

�9 ~ -2 '  

-2.5 

d=3 
J=gauss. 

/ / / " ~ - - - L(~) 

iiii x ~  I "~,~ 

-3. I I 
I 

I 
-3.5 I 

0 1 2 3 4 
T 

Fig. 1. Gaussian couplings: the annealed ( - - )  and constrained (--) free energy densities in 
d= 3 versus T= I/p. The maximum of the two functions ( ... ) estimate the quenched ground- 
state energy. 
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4.2. Dichotomic Couplings in Two Dimensions 

Let us now consider a d-dimensional spin glass with i.i.d, couplings J,y 
which assume two possible values + 1 with probability 1/2. The annealed 
approximation of the free energy density is 

f,(fl) = - ~ l n  2 - ~ l n  cosh(//) (4.14) 

We remark that this annealed approximation gives the correct free energy 
density (4.3) in one dimension. This is at variance with the Gaussian case, 
where the correct free energy in one dimension is recovered only after 
that the Lagrangian multiplier is introduced. One would be tempted to 
improve this result using an intensive variable AN of the type in (4.8) with 

depending on a single coupling Jo" Unfortunately, a direct calculation 
shows that no improvement is possible following this choice. To improve 
this result it is necessary to make a choice of variables 0r depending on 
more than a single coupling. A possibility (first proposed in ref. 9) is to 
introduce variables 0~ associated with the single square plaquette frustra- 
tion. With this choice the intensive variable AN is 

}-'Jp (4.15) 
P 

where the ,7p are the products of the four couplings of each plaquette. The 
sums run over all plaquettes of the d-dimensional spin glass (d>~ 2) or on 
a part of them. The associated generalized partition function is 

ZN(fl, p)= ~ exp (<~>flJua~aj+ ~p3p) (4.16) 

We now take the average of this generalized partition function. Taking into 
account that the couplings are dichotomic with equal probability, we can 
perform the transformation Jo.--+ Jo.aiaj which leaves unchanged the ,Tp 
(]p--+ Jp). The averaged partition function is 

~-[ZN(~,p)]=2'AN'~-[exp(<~>~Jo.+~/-Jp) 1 (4.17) 

This expression (which is meaningful for any dimension d>~ 2) cannot be 
computed exactly if the sum goes over all plaquettes. However, the above 
expression remains meaningful if the sum is restricted on a subset of the 
plaquettes. Our proposal is to consider the d = 2 case and restrict ourselves 
to one-half of the plaquettes, to be chosen in order that they do not share 
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couplings (say, the white plaquettes of a chessboard). With this choice the 
above expectation contains a sum over products of ArN independent 
variables (corresponding to the o~N white plaquettes in AN) and can be 
rewritten as 

[E[ZN(fl,,u)] = 21A~'lE[exp{fl(J, + J2 + J3 + 3"4) +l-zJiJ2J3J4} ]yu  (4.18) 

where J],  J2, J3, and J4 are the couplings of one of the plaquettes and 
equal __+ 1 with probability 1/2. This expectation is easily computed and, 
after having taken the thermodynamic limit [taking into account that 
l imN~ o~, ( A ~ / I A N I )  = 1/2] and maximizing with respect to gt, one obtains 

g ( f l ) = -  4-~ In 2--4~ In cosh 2 f l - 4 ~  In [(cosh 2fl)2+ 1 ] (4.19) 

This d = 2 constrained annealed free energy improves the annealed estimate 
(4.14). The functions fa(fl) in (4.14) and g(fl) in (4.20) are plotted for d = 2  
in Fig. 2. We see that, at variance with the annealed case, the entropy 
remains positive when the temperature approaches zero and the improve- 
ment is therefore relevant. The ground-state energy estimate is 

E o >~ sup g(fl) >>. g(fl = o o  ) = - 1 .5  ( 4 . 2 0 )  
# 
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Fig. 2. Dichotomic couplings: the annealed (--) and constrained (--) free energy densities 
in d= 2 versus T= 1/ft. 
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The analogous d = 2  estimate obtained from fa(fl) in (4.14) gives 
E 0 >~ -1.56. These results can be usefully compared with the numerical or 
finite-volume estimate Eo = - 1.404 ___ 0.002. tlS) 

It is not immediately evident that our approach can be repeated in any 
dimension d >  2, i.e., that it is possible to find a way of grouping the 
couplings in independent elementary plaquettes. In three dimensions, after 
some reasoning and some experiments, one becomes convinced that this is 
in fact possible. The only difference is that the number of plaquettes is 3/2 
larger than in the d =  2 case. These considerations lead to the expression 
for the d =  3 constrained free energy density: 

g(f l)= - -8~ ln  2--8-~ In cosh 2 f l - +  ln[ (cosh 2fl)2 + 1 ] (4.21) 

which is shown in Fig. 3. In this case the estimate (4.21) is rather unsatis- 
factory, since g(fl) is unphysical at low temperature because the entropy 
becomes negative. The ground-state energy is estimated by the supremum 
of (4.21) as Eo > / -  1.939. 

However, we shall see in the next subsection that this bound for the 
d =  3 case can be improved by choosing a more clever strategy. 
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-2- 

-2.2- 

~ - 2 . 4 -  

~. - 

~ -2.6- 

,"""" d = 3  

. . . . .  g(~) (elem. cubes) 
.2.;l/_ - - .  fa (fl)g(fl) (elem.plaquettes) 

' " " ' I ' ' ' ' I " ' ' ' I ' ' " ' I ' ' ' ' I " ' ' ' I 

0 0.5 1 1.5 2 2.5 3 
T 

Fig. 3. Dichotomic couplings: the annealed (--) and two constrained free energy densities 
in d= 3 versus T= 1/ft. These constraints are related, respectively, to square plaquettes (--) 
and to unitary cubes (---) .  
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4.3. Dichotomic Couplings in Three Dimensions 

In this subsection we consider again a finite cube AN in Z 3 and 
dichotomic couplings J u =  ___1 (with probability 1/2) between nearest 
neighbors. 

Let 8(AN) denote the set of all the edges of AN. An edge of AN will 
be called internal if at least one of its vertices is an internal point of AN 
(a point being internal if its nearest neighbors are all in AN). We select a 
subset EN C g(Au) in the following way. Each internal edge of AN belongs 
to E N. Moreover, EN also contains boundary edges (i.e., edges of AN which 
are not internal) in such a way that it must be possible to write EN as the 
union of the edges of WN unitary cubes with vertices in AN having no 
common edge. We shall consider only couplings related to edges of E N. 
Notice that this decomposition of EN into cubes generalizes the d = 2 chess- 
board-type selection of plaquettes used in the previous subsection. We 
introduce in the notation of the couplings a new index (k) specifing the 
unitary cube to which they belong: j(k) means that the coupling J,7 belongs - - g  

to the kth unitary cube (k = 1 ..... JtrN). 
Our goal is to compute an annealed average of the partition function 

Z u with constraints over all the possible quantities of the kind 

~4c~t 

As = Y'. 1-[ j~.k) (4.22) 
k = l  L~ 

with ~:[As] = 0, where L, is a closed loop inside a unitary cube. As a conse- 
quence, r-f r ( k )  i xL, ~ can be thought of as the frustration computed along the 
closed loop Ls of the kth cube. Therefore the average of the generalized 
partition function is 

F IZNexp (~l,t~A,) ] = ~} E [exp (fl <~> J~k. )aia.i+ ~12sA,) 1 (4.23) 

Recalling (4.22) and the trick used in Section 4.2, i.e., the transformation 
Ju ~ JuaiaJ, we can factorize the right-hand side of the previous relation 
among the cubes, so that one has 

F[ZNexp(~lLA,)l={E[Zr -~N (4.24) 

where now {J0} are the 12 couplings of a single unitary cube in the lattice, 
and Zcubo is the partition function of this cube. 
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The resulting constrained annealed free energy densities is 

g(f l)= -fll(2im~ ~-[JV'N) In ~min E I Zcube exp ( ~ / z  ~ I-I Jo')l} (4.25) 
[ {m} L, 

A moment of reflection shows that limN_o~ (-Y'N/IANI) = 1/4. We have 
therefore changed our problem into the computation of a quantity limited 
to a single unitary cube of the lattice. 

Let us consider five faces of the unitary cube, numbered from 1 to 5. 
Moreover, we introduce the frustrations { Yi} related to these squares, that 
is, the products of the four couplings of each face. 

Any generic closed loop Ls inside the cube can be thought of as the 
contour of an appropriate subset of these five faces, and the frustration 
along the loop L~ can be expressed as 

5 

I-I Jo = I-[ Y~' (4.26) 
Ls i = ]  

where s,-~ {0, 1} indicates if the ith face belongs (si= 1) or not ( s j=0)  to 
the subset that built up the loop L~. The relation between the {s,.} and the 
index s can be established by 

5 

S= E si2i ( 4 . 2 7 )  

i ~ l  

As a consequence, we have 3I different closed loops inside the cube (indeed 
the topologically different loops are only 8). The case s = 0 means no loop. 

The five frustrations {Ji} turn out to be a set of independent 
dichotomic random variables (Yg= + 1 with probability 1/2) that can fully 
describe the system of a single unitary cube. In fact the partition function 
Zcube reads 

31 5 

Zcube=28[c~ t2 ~ [tanh(fl)] ~' I-I Y~' (4.28) 
s = 0  i=t 

where l, is the length of the loop L,. Indeed, by virtue of the dichotomic 
nature of the variables {Yi}, Zcubo can be written as 

Zcube=eXp as r [  y~' (4.29) 
s 0 i = l  

where the coefficients {a,} are defined by 

5 
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with k = ~ =  t kJ 2i- As a consequence, the nontrivial part of (4.25) becomes 

=minn:  exp ao+ ~ (as+/~s) Y~' (4.31) 
{~s} s = o  i= l 

A moment of reflection shows that the minimum is reached for 

/z,= - a  s VsE{l ..... 31} (4.32) 

so that 

{'us} s L:~ 

Coming back to g(fl), one obtains 

= exp(ao) = exp(E[ln Zcubr (4.33) 

g(fl) = - 4 ~  E[ln Zc.be] = 2 E[fr (4.34) 

where E[fr is the quenched free energy density of a random system 
formed by a single unitary cube of the lattice, which has a long expression, 
but can be exactly computed. This permits us to recover g(fl), the annealed 
free energy density of the whole three-dimensional spin glass with con- 
straints on the frustrations inside the unitary cubes, which is shown in 
Fig. 3. Indeed, this new quantity is unphysical, too, at low temperature 
(negative entropy), but its supremum with respect to fl gives a better 
estimate of the ground-state energy density: Eo i> - 1.917. 
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